International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 13

ISSN 2229-5518

Fast Distributed Mining of Technologies for
Privacy Enhancement

T.Santhiya, N.Vigneshkumar

Abstract— Data mining can extract a pattern of important knowledge from large data collections but sometimes these collections are
splited into various parties. Privacy concerns which may prevent the parties from directly sharing of a data which matches to the pattern
information, and some types of information about the data. This paper point out secure mining of association rules over horizontally
partitioned database. The method incorporate cryptographic techniques to minimize the information or data shared, while adding little
overhead to the mining task. This proposal contains a protocol for secure mining of association rules in horizontally distributed databases.
The current leading protocol which used for secure mining is UNIFI-KC. The protocol based on the Fast Distributed Mining algorithm, and
is a portion of an unsecured distributed version of the Apriori algorithm. The main integrant in this protocol are two novel secure multi-party
algorithms that is one which computes the union of private subsets that each of the interacting players hold, and another that tests the
inclusion of an element held by one player in a subset held by another. This protocol offers enhanced privacy combined to the protocol
UNIFI-KC. In addition, it is simpler and is significantly more efficient in terms of communication rounds, communication cost and

computational cost.

Index Terms— Data Mining, Frequent Item sets, Association Rules, multi-party, Privacy Preserving Data Mining; Distributed Computation,

Unifying lists of locally Frequent Itemsets —Kantarcioglu and Clifton

1. INTRODUCTION

In secure mining of association rules in hori-
zontally partitioned databases setting, thereare several sites
(or players) that hold the structure of homogeneous databases,
i.e., databases that share the same structure of the databases
but hold information and other contents on different entities.
The goal is to find out all association rules with support at
least s and confidence at least ¢, for some given minimal sup-
port size s and confidence level c, that hold in the unified da-
tabase, while reducing the information disclosed about the
private databases held by those players. The information that
we would like to protects the context that is not only individu-
al transactions between the different databases, but also the
database contain more global information such as what asso-
ciation rules are supported locally in each of those databases.
That goal identifies several problems of secure multi-party
computation. In such problems, there are M players hold pri-
vate inputs, x1,...., XM, and they wish to securely compute y =
f(x1, . . ., xM) for some public function f. If there existed a
trusted third party, the players could surrender to him their
inputs and he would perform the function evaluation and
send to them the resulting output. In the absence of such a
trusted third party, it is needed to devise a protocol that the
players can run on their own in order to arrive at the require-
doutput y. Such a protocol is considered perfectly secure if no
player can learn from his view of the protocol more than what
he would have learnt in the idealized setting where the com-
putation is carried out by a trusted third party. Other generic
solutions, for the multi-party case, were later proposed in [3],
[5]. [8].

In our problem, the inputs are the partial databases, and the
required output is the list of association rules that hold in the
unified database with support and confidence no smaller than

the given thresholds s and c, respectively. As the above men-
tioned generic solutions rely upon a description of thefunction
f as a Boolean circuit, they can be applied only to small inputs
and functions which are realizable by simple circuits. In more
complex settings, such as ours, other methods are required for
carrying out this computation. In such cases, some relaxations
of the notion of perfect security might beinevitable when look-
ing for practical protocols, provided that the excess informa-
tion is deemed benign (see examples of such protocols in e.g.
[5], [6], [71, [8], [9]). Kantarcioglu and Clifton studied that
problem in [5] and devised a protocol for its solution. The
main part of the protocol is a sub-protocol for the secure com-
putation of the union of private subsets that are held by the
different players. (Theprivate subset of a given player, as we
explain below, includes the itemsets that are s-frequent in his
partial database.) That is the most costly part of the protocol
and its implementation relies upon cryptographic primitives
such as commutative encryption, oblivious transfer, and hash
functions.

This is also the only part in the protocol in which the
players may extract from their view of the protocol informa-
tion on other databases, beyond what is implied by the final
output and their own input.While such leakage of information
renders the protocol not perfectly secure, the perimeter of the
excess information is explicitly bounded in [5] and it is argued
there that such information leakage is innocuous, whence ac-
ceptable from a practical point of view. Herein we propose an
alternative protocol for the secure computation of the union of
private subsets. The proposed protocol improves upon that in
[18] in terms of simplicity and efficiency as well as privacy. In
particular, our protocol does not depend on commutative en-
cryption and oblivious transfer (what simplifies it significantly

IJSER © 2015
http://www.ijser.org

International Journal of Scientific & Engineering Research Volume 6, Issue 5, May-2015

ISSN 2229-5518

and contributes towards much reduced communication and
computational costs). While oursolution is still not perfectly
secure, it leaks excess informationonly to a small number
(three) of possible coalitions, unlike theprotocol of [5] that dis-
closes information also to some singleplayers. In addition, we
claim that the excess information that our protocol may leak is
less sensitive than the excess information leaked by the proto-
col of [5].The protocol that we propose here computes a para-
meterized family of functions, which we call threshold func-
tions, in which the two extreme cases correspond to the prob-
lemsof computing the union and intersection of private sub-
sets Those are in fact general-purpose protocols that can be
used in other contexts as well. Another problem of secure mul-
tiparty computation that we solve here as part of our discus-
sion is the set inclusion problem; namely, the problem where
Aliceholds a private subset of some ground set, and Bob holds
an element in the ground set, and they wish to determine
whether Bob’s element is within Alice’s subset, without reveal-
ing to either of them information about the other party’s input
beyond the above described inclusion.

In previous year various techniques are applied for
secure mining of association rules in horizontally partitioned
database. These approaches use various techniques such as
data perturbation, homo-morphic encryption, keyword search
and oblivious pseudorandom functions etc. These privacy pre-
serving approaches are inefficient due to

= Homo-morphic encryption

= Higher computational cost

= In some of the techniques data owner tries to hide data-

from data miner.

Our proposed technologies based on two novel secure multi-
party algorithm using these algorithms the protocol provides
enhanced privacy, security and efficiency as it uses commuta-
tive encryption. Here a protocol for secure mining of associa-
tion rules in horizontally distributed database. This protocol is
based on: FDM Algorithm which is an unsecured distributed
version of the Apriori algorithm. In our protocol two secure
multiparty algorithms areinvolved:

1. Computes the union of private subsets that each inte-
ract ing players hold.

2. Tests the inclus ion of an element held by one player in
subset held by another.
In Horizontally partitioned database there are several players
that hold homogeneous database. Our protocol offers en-
hanced privacy with respect to the current leading K and C
protocol simplicity, more efficient in terms of communication
rounds, communication cost and computational cost. In this
problem, the inputs are the partial databases and the required
output is the list of association rules that hold in the unified
database with support and confidence no smaller than the
given thresholds s and c, respectively.

2. PRELIMINARIES:
2.1 Process Design:

Association Rule Algorithms

An association rule is a rule which implies certain association
relationships among a set of objects (such as “occur together"
or ““one implies the other") in a database. Given a set of trans-
actions, where each transaction is a set of literals (called
items), an association rule is an expression of the form X Y ,
where X and Y are sets of items. The intuitive meaning of such
a rule is that transactions of the database which contain X tend
to contain Y . An example of an association rule is: ~30% of
transactions that contain beer also contain diapers; 2% of all
transactions contain both of these items". Here 30% is called
the confidence of the rule, and 2% the support of the rule. The
problem is to find all association rules that satisfy user-
specified minimum support and minimum confidence con-
straints.

Apriori Algorithm
An association rule mining algorithm, Apriori has been devel-
oped for rule mining in large transaction databases by IBM's
Quest project team[3] . Aitemset is a non-empty set of items.
They have decomposed the problem of mining association
rules into two parts
. Find all combinations of items that have transaction
support above minimum support. Call those combinations
frequent itemsets.
. Use the frequent itemsets to generate the desired
rules. The general idea is that if, say, ABCD and AB are fre-
guent itemsets, then we can determine if the rule AB CD holds
by computing the ratio r = support(ABCD)/support(AB). The
rule holds only if r >= minimum confidence. Note that the rule
will have minimum support because ABCD is frequent. The
Apriori algorithm used in Quest for finding all frequent item-
sets is given below
procedureAprioriAlg()
begin
L. := {frequent 1-itemsets};
for (k= 2; Lkio;ke+)do {

Ci«= apriori-gen(Lxy ; // new candidates
for all transactions t in the dataset do
{

for all candidates ¢ Ck contained in t do

c.count++

}

Lk ={ ¢ C«] c:count >= min-support}
}
Answer := Lk
end

It makes multiple passes over the database. In the first pass,
the algorithm simply counts item occurrences to determine the

IJSER © 2015
http://www.ijser.org

International Journal of Scientific & Engineering Research Volume 6, Issue 5, May-2015

ISSN 2229-5518

frequent 1-itemsets (itemsets with 1 item). A subsequent pass,
say pass Kk, consists of two phases. First, the frequent itemsets
Lk (the set of all frequent (k-1)-itemsets) found in the (k-1)th
pass are used to generate the candidate itemsetsCk, using the
apriori-gen() function. This function first joins Lkt with Lk,
the joining condition being that the lexicographically ordered
first k-2 items are the same. Next, it deletes all those itemsets
from the join result that have some (k-1)-subset that is not in
Lk yielding Cx. The algorithm now scans the database. For
each transaction, it determines which of the candidates in C«
are contained in the transaction using a hash-tree data struc-
ture and increments the count of those candidates. At the end
of the pass, C« is examined to determine which of the candi-
dates are frequent, yielding Lx. The algorithm terminates when
Lkempty.

Distributed/Parallel Algorithms

Databases or data warehouses may store a huge amount of
data to be mined. Mining association rules in such databases
may require substantial processing power. A possible solution
to this problem can be a distributed system.[5] . Moreover,
many large databases are distributed in nature which may
make it more feasible to use distributed algorithms.

Major cost of mining association rules is the computation
of the set of large itemsets in the database. Distributed compu-
ting of large itemsets encounters some new problems. One
may compute locally large itemsets easily, but a locally large
itemset may not be globally large. Since it is very expensive to
broadcast the whole data set to other sites, one option is to
broadcast all the counts of all the itemsets, no matter locally
large or small, to other sites. However, a database may contain
enormous combinations of itemsets, and it will involve pass-
ing a huge number of messages.

A distributed data mining algorithm FDM (Fast Distributed
Mining of association rules) has been proposed by [5], which
has the following distinct features.

1. The generation of candidate sets is in the same spirit
of Apriori. However, some relationships between locally large
sets and globally large ones are explored to generate a smaller
set of candidate sets at each iteration and thus reduce the
number of messages to be passed.

2. After the candidate sets have been generated, two
pruning techniques, local pruning and global pruning, are
developed to prune away some candidate sets at each indi-
vidual sites.

3. In order to determine whether a candidate set is large,
this algorithm requires only O(n) messages for support count
exchange, where n is the number of sites in the network. This
is much less than a straight adaptation of Apriori, which re-
guires O(n2) messages.

FDM Algorithm:

Distributed/Parallel Algorithms

Databases or data warehouses may store a huge amount of
data to be mined. Mining association rules in such databases
may require substantial processing power . A possible solution
to this problem can be a distributed system.[5] . Moreover,
many large databases are distributed in nature which may
make it more feasible to use distributed algorithms.

Major cost of mining association rules is the computation of
the set of large itemsets in the database. Distributed compu-
ting of large itemsets encounters some new problems. One
may compute locally large itemsets easily, but a locally large
itemset may not be globally large. Since it is very expensive to
broadcast the whole data set to other sites, one option is to
broadcast all the counts of all the itemsets, no matter locally
large or small, to other sites. However, a database may contain
enormous combinations of itemsets, and it will involve pass-
ing a huge number of messages. A distributed data mining
algorithm FDM (Fast Distributed Mining of association rules)
has been proposed by [5], which has the following distinct
features.

The generation of candidate sets is in the same spirit of
Apriori. However, some relationships between locally large
sets and globally large ones are explored to generate a smaller
set of candidate sets at each iteration and thus reduce the
number of messages to be passed. After the candidate sets
have been generated, two pruning techniques, local pruning
and global pruning, are developed to prune away some can-
didate sets at each individual site. In order to determine
whether a candidate set is large, this algorithm requires only
O(n) messages for support count exchange, where n is the
number of sites in the network. This is much less than a
straight adaptation of Apriori, which requires O(n2) messages.

Let D be a database of N = 18 itemsets over a set of L = bitems,
A={1, 2, 3, 4, 5}. It is partitioned between M = 3players, and
the corresponding partial databases are:

D1 ={12,12345, 124, 1245, 14, 145, 235, 24, 24}

D2 = {1234, 134, 23, 234, 2345}

D3 ={1234, 124,134, 23} .

For example, D1 includes N1 = 9 transactions, the third ofw-
hich (in lexicographic order) consists of 3 items — 1, 2 and4.
Setting s = 1/3, an itemset is s-frequent in D if it is supported
by at least 6 = sNof its transactions. In this case,

F19={1, 2, 3, 4}

F2(9= {12, 14, 23, 24, 34}

F3(9= {124}

FA(9= Fs(9= +,

and FO=F:6 U F26) U F36). For example, the itemset34 is indeed
globally s-frequent since it is contained in 7 transactions of D.
Howvever, it is locally s-frequent only in D2and D3.

IJSER © 2015
http://www.ijser.org

International Journal of Scientific & Engineering Research Volume 6, Issue 5, May-2015

ISSN 2229-5518

In the first round of the FDM algorithm, the three players
compute the sets camsof all 1-itemsets that are locallyfrequent
at their partial databases:

Cuns={1, 2, 4, 5},

Cuas={1,2, 3,4},

Cuwd=(1, 2, 3,4}.

Hence, c®s={1, 2, 3, 4, 5}. Consequently, all 1-
itemsetshave to be checked for being globallyfrequent; that
checkreveals that the subset of globally s-frequent 1-itemsets is

Fos={1, 2, 3, 4}.

In the second round, the candidate itemsets are:

Cens={12, 14, 24}

C@2s=(13, 14, 23, 24, 34}

Cens={12, 13, 14, 23, 24, 34} .

(Note that 15, 25, 45 are locally s-frequent at D1 but
theyare not included in C3ssince 5 was already found to beg-
lobally infrequent.) Hence,

C@s={12, 13, 14, 23, 24, 34}.

Then, after verifying global frequency, we are left with

F@s={12, 14, 23, 24, 34}.

In the third round, the candidate itemsets are:

CeD:={124} ,Ce2={234} , CG3={124} .

So, C®s={124, 234} and, then,F@s={124}. There are no-
more frequent itemsets.

Detailed description

«In Phase 0 (Steps 2-4), the players select the needed
cryptographic primitives: They jointly select a commutative
cipher, and each player selects a corresponding private ran-
dom key. In addition, they select a hash function h to apply on
all itemsets prior to encryption. It is essential that h will not
experiencecollisions on Ap(Fs(k-1))in order to make it inverti-
ble on Ap(Fs(k-1)). Hence, if such collusions occur (an event of
a very small probability), a different hash function must be
selected. At the end, the players compute a lookup table with
the hash values of all candidate itemsets in Ap(Fs(k-1)); that
table will be used later on to find the preimage of a given hash
value.

= In Phase 1 (Steps 6-19), all players compute a com-
posite encryption of the hashed sets Cskm, 1 < m< M.
First(Steps 6-12), each player Pm hashes all itemsets in Ck,m s
and then encrypts them using the key Km. (Hashing is needed
in order to prevent leakage of algebraic relations between
itemsets, see [18, Appendix].) Then, he adds to the resulting
set faked itemsets until its size becomes | Ap(F«ts)], in order
to hide the number of locally frequent itemsets that he
has.(Since CkmscCAp(Fkts), the size of Ckmsis bounded
by|Ap(Fxis)], for all 1 < m < M.) We denote the resultingset
by Xm. Then (Steps 13-19), the players start a loopof M - 1
cycles, where in each cycle they perform thefollowing opera-
tion: Player Pm sends a permutation of Xmto the next player
Pm+1; Player Pm receives from Pm-1 apermutation of the set

Xm-1 and then computes a new Xmas Xm= EKm(Xm-1). At
the end of this loop, Pm holdsan encryption of the hashed
Ckm+s ysing all M keys. Dueto the commutative property of
the selected cipher, Player Pmholds the set {EM(:
(E2(EL(h(X)))) - - -) : X ECkm+ig},

« In Phase 2 (Steps 21-26), the players merge the lists ofen-
crypted itemsets. At the completion of this stage P1 holdsthe
union set hashed and then encrypted byall encryption keys,
together with some fake itemsets that wereused for the sake of
hiding the sizes of the sets; thosefake itemsets are not needed
anymore and will be removedafter decryption in the next
phase.

The merging is done in two stages, where in the first stagethe
odd and even lists are merged separately. As explainedin [18,
Section 3.2.1], not all lists are erged at once sinceif they were,
then the player who did the merging (say P1)would be able to
identify all of his own encrypted itemsets(as he would get
them from PM) and then learn in which ofthe other sites they
are also locally frequent.

In Phase 3 (Steps 28-34), a similar round of decryptionsis in-
itiated. At the end, the last player who performs the lastde-
cryption uses the lookup table T that was constructed in Step 4
in order to identify and remove the fake itemsets andthen to
recover Cks. Finally, he broadcasts Cksto all his peers.

Going back to the running example in Section 1.1.3, the set F%s
, consisting of all 2-itemsets that are globally s-frequent, in-
cludes the itemsets{12, 14, 23, 24, 34}. Applying on it the Apri-
ori algorithm, we find that Ap(F>%) = {124, 234}.

Therefore, each of the three players proceed to look
for 3-itemsetsfrom Ap(F%) that are locally s-frequent in his
partial database.Since C3.1s= {124}, P1 will hash and encrypt the
itemset 124and will add to it one fake itemset, since | Ap(F2s)]
= 2. AsC32%= {234} and C3,3s = {124}, also P2 and P3 will ea-
chuse one fake itemset.

At the completion of the protocol, thethree players
will conclude that C3
s = {124, 234}. Then, byapplying the protocol in Section 3, they
will find out that onlythe first of these two candidate itemsets
is globally frequent,hence F3s = {124}.

2.2 A secure multiparty protocol for computing the OR of
private binary vectors

Protocol UNIFI-KC securely computes of the union of
privatesubsets of some publicly known ground set.Sucha
problem is equivalent to the problem of computing the OR
ofprivate vectors. Indeed, if the ground set then any subset
may be described by the characteristicbinary vector. Let the
binary vector that characterizes theprivate subset held by
player .Then theunion of the private subsets is described by
the OR of thoseprivate vector, Such a simple function can be
evaluated securely by thegeneric solutions suggested in [3],
[5], We present herea protocol for computing that function

IJSER © 2015
http://www.ijser.org

International Journal of Scientific & Engineering Research Volume 6, Issue 5, May-2015

ISSN 2229-5518

which is much simplerto understand and program and much
more efficient than thosegeneric solutions. It is also much
simpler than Protocol UNIFIKCand employs less cryptograph-
ic primitives. Our protocol(Protocol 2) computes a wider range
of functions, which wecall threshold functions.

2.4 Privacy

We begin by analyzing the privacy offered by Proto-
col UNIFIKC.That protocol does not respect perfect privacy
since itreveals to the players information that is not implied by
their
own input and the final output. In Step 11 of Phase 1 of the-
protocol, each player augments the set Xmby fake itemsets.To
avoidunnecessary hash and encryption computations, those-
fake itemsets are random strings in the ciphertext domainof
the chosen commutative cipher. The probability of twoplayers
selecting random strings that will become equal atthe end of
Phase 1 is negligible; so is the probability ofPlayer Pm to select
a random string that equals EKm(h(x))for a true itemsetx
eAp(F<1s). Hence, every encrypteditemset that appears in
two different lists indicates with highprobability a true itemset
that is locally s-frequent in bothof the corresponding sites.
Therefore, Protocol UNIFI-KCreveals the following excess in-
formation:

(1) P1 may deduce for any subset of the odd players, the-
number of itemsets that are locally supported by all ofthem.

(2) P2 may deduce for any subset of the even players, the-
number of itemsets that are locally supported by all ofthem.

(3) P1 may deduce the number of itemsets that are supported-
by at least one odd player and at least one even player.

(4) If P1 and P2 collude, they reveal for any subset of theplay-
ers the number of itemsets that are locally supportedby all of
them.

As for the privacy offered by Protocol UNIFI, we considertwo
cases: If there are no collusions, then, by Theorem 2.3,Protocol
UNIFI offers perfect privacy with respect to allplayers

Pm, m £ 2, and computational privacy with respectto P2. This
is a privacy guarantee better than that offeredby Protocol UN-
IFI-KC, since the latter protocol does revealinformation to P1
and P2 even if they do not collude with anyother player.

If there are collusions, both Protocols UNIFI-KC andUNIFI
allow the colluding parties to learn forbidden information. In
both cases, the number of “suspects” is small —in Protocol
UNIFI-KC only P1 and P2 may benefit from a collusion while
in Protocol UNIFI only P1, P2 and PMcan extract additional
information if two of them collude (see Theorem 2.3). In Pro-
tocol UNIFI-KC, the excess informationwhich may be ex-
tracted by P1 and P2 is about the number ofcommon frequent
itemsets among any subset of the players.

Namely, they may learn that, say, P2 and P3 have ma-
nyitemsets that are frequent in both of their databases (but
notwhich itemsets), while P2 and P4 have very few itemsets-

that are frequent in their corresponding databases. The exces-
sinformation in Protocol UNIFI is different: If any two outof
P1, P2 and PM collude, they can learn the sum of allprivate
vectors. That sum reveals for each specific itemsetin Ap(F<1s)
the number of sites in which it is frequent,but not which sites.
Hence, while the colluding players inProtocol UNIFI-KC can
distinguish between the differentplayers and learn about the
similarity or dissimilarity betweenthem, Protocol UNIFI leaves
the partial databases totallyindistinguishable, as the excess
information that it leaks iswith regard to the itemsets only.To
summarize, given that Protocol UNIFI reveals no excessinfor-
mation when there are no collusions, and, in addition,when
there are collusions, the excess information still leavesthe par-
tial databases indistinguishable, it offers enhanced privacypre-
servation in comparison to Protocol UNIFI-KC.

3. DISCUSSION

Here in figure 1 two graphs shows the number oftransac-
tion N has little effect on the runtime of FDM-KC.The second
set of graph in figure 2 illustrates how theCommunicate

Total computation time

100 +—— — —

00000 200000 00000

Total message size

100ma 200000
[

Figure 1. Computation and communication costs versusthe
number of transactions NComparatively study of FDM and
FDM-KC is shown inthe figure 1 and figure 2.

IJSER © 2015
http://www.ijser.org

International Journal of Scientific & Engineering Research Volume 6, Issue 5, May-2015

ISSN 2229-5518

Total computation time

=0
=
o
[

=
B
it

=

Total message size

1000 e

= LTI

~i— LniF

"M

Figure 2: Computation and communication costs versusthe
number of players M

4. CONCLUSION

In this project we devise a protocol for secure mining ofassoci-
ation rules in horizontally partitioned distributeddatabases.
The protocol is more efficient than current leading K and C
protocol. The main ingredients of this protocol are two novel
secure multiparty algorithms in which these two main opera-
tions are union and intersection. The protocol exploits the fact
that the underlying problem is of interest only if the number
ofplayer is more than two. The direction to future work is to
devise an efficient protocol for inequality verifications that
uses theexistenceof semi-honest third party and another in
Implementation of the techniques to the problem of distri-
buted association rule mining in vertical setting.

REFERENCES

[1] Tamirtassa, “Secure Mining of Association Rules inHorizontally Dis-
tributed Databases”, IEEEtransactions on knowledge and data engi-
neering,

2013.

[2] J. Vaidya and C. Clifton, “Privacy preservingassociation rule mining
in vertically partitioneddata,” in The Eighth ACM SIGKDD Internatio-
nalConference on Knowledge Discovery and DataMining, Edmonton, Al-
berta, Canada, July 23-26
2002, pp. 639-644.

[3] M.Kantarcioglu and C. CI’ ifton., “Privacy-
preservingdistributed mining of association rules onhorizontally par-
titioned data”, IEEE Transactions onKnowledge and Data Engineering,

IJSER © 2015

[4]
(5]
(6]

(71

(8]

[9]

16:1026-1037,2004.

R.Agrawal and R. Srikant.,“Privacy-preserving datamining”, SIG-
MOD Conference, pages 439-450,2000.

A.V. Evfimievski, R. Srikant, R. Agrawal, and J.Gehrke, “Privacy
preserving mining of associationrules”, In KDD, pages 217-228, 2002.
M. Kantarcioglu, R. Nix, and J. Vaidya,“An efficientapproximate
protocol for privacy-preservingassociation rule mining”, In PAKDD,
pages 515-524, 2009.

M. Freedman, Y. Ishai, B. Pinkas, and O. Reingold.,“Keyword search
and oblivious pseudorandomfunctions”, In TCC, pages 303-324,
2005.

T. Tassa and E. Gudes. Secure distributed computation of anony-
mized views of shared databases. Transactions on Database Systems, 37,
Avrticle 11, 2012.

J. Zhan, S. Matwin, and L. Chang. Privacy preserving collaborative
association rule mining. In Data and Applications Security, pages 153-
165, 2005.

http://www.ijser.org

